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I. Introduction

Interest rates on safe assets fell sharply during the 2008financial crisis. This
is not particularly surprising; there are many reasons, from an increased
demand for safe assets tomonetarypolicy responses,why riskless rates fall
during periods of financial turmoil. However, even after the financial mar-
kets calmed down, this state of affairs persisted. In fact, by 2017, several
years after the crisis, government bond yields still showed no sign of
rebounding. In figure 1, we show the change in longer-term govern-
ment yields in a number of countries since the financial crisis. Looking
at longer-term rates allows us to abstract from transitory monetary pol-
icy and interpret the graph as evidence of a persistent decline in the level
of riskless interest rates.
The decline in interest rates following thefinancial crisis tookplace in the

context of a general downward trend in real rates since the early 1980s. Ob-
viously, this longer-run trend cannot be attributed to thefinancial crisis. In-
stead, it may have come from a gradual change in expectations following
the high inflation in the 1970s or a surge in savings from emergingmarkets
seeking safe assets to stabilize their exchange rates. This longer-run trend
taking place in the background is hugely important but distinct from our
question. We seek to explain the fact that interest rates fell (relative to this
long-run trend) during the financial crisis and failed to rebound.
We explore a simple explanation for this phenomenon: before 2008, no

one believed that a major recession sparked by a financial crisis with mar-
ket freezes, failure ofmajor banks, and so forth could happen in the United
States. The events in 2008 and 2009 taught us that this is more likely than
we thought. Today, the question of whether the financial crisis might re-
peat itself arises frequently. Although we are no longer on the precipice,
the knowledge we gained from observing 2008–9 stays with us and re-
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shapes our beliefs about the probability of large adverse shocks. This per-
sistent increase in perceived “tail risk”makes safe liquid assets more valu-
able, keeping their rates of return depressed for many years. The contribu-
tion of this paper is to measure how much tail risk rose, explain why it
remains elevated, and quantitatively explore its consequences for riskless
interest rates.
At its core is a simple theory about how agents form beliefs about the

probability of rare tail events. Our agents do not know the distribution of
shocks hitting the economy and use macro data and standard economet-
ric tools to estimate the distribution in aflexible, nonparametricway. Tran-
sitory shocks have persistent effects on beliefs, because once observed, the
shocks remain forever in the agents’ data set. Then, we embed our belief
formation mechanism into a standard production economy with liquidity
constraints. When we feed a historical time series of macro data for the

Fig. 1. Low interest rates are persistent. Change in percentage points of 10-year gov-
ernment bond yield since July 3, 2006 (Irwin 2016). A similar pattern emerges, even if
we control for inflation.
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postwarUnited States into ourmodel and let our agents reestimate the dis-
tribution from which the data are drawn each period, our belief revision
mechanism goes a long way in explaining the persistent postcrisis decline
in government bond yields since 2008–9.
The link between heightened tail risk and rates of return in the model

comes from two intuitive mechanisms. First, the increase in consumption
riskmakes safe assetsmore valuable, lowering the required return on risk-
less government bonds. The second stems from the fact that government
bonds also provide liquidity services that are particularly valuable in very
bad states. Intuitively, in those states, the liquidity available from other
sources falls. The main contribution of this paper is to combine these stan-
dard forceswith the aforementioned theory of beliefs in a simple, tractable,
and empirically disciplined framework and show that rare events like the
2008–9 recession generate large, persistent drops in riskless interest rates.
Apart from being quantitatively successful, our explanation is also con-

sistent with other evidence of heightened tail risk. For example, in their
value at risk (VAR) analysis, Del Negro et al. (2017) find that most of the
decline in riskless rates is attributable to changes in the value of safety
and liquidity. From 2007 to 2017, they estimate a 52-basis point change
in the convenience yield of US Treasury securities (which is about 80%
of the estimated drop in the natural riskless real rate over the same time
period). A second piece of evidence comes from the SKEW index, an
option-implied measure of tail risk in equity markets. Figure 2 shows a
clear rise since the financial crisis, with no subsequent decline.1 In our
quantitative analysis, we show that the implied changes in tail probabil-
ities are roughly in line with the predictions of our calibrated model. Fi-
nally, popular narratives about stagnation emphasize a change in “atti-
tudes” or “confidence,” which we capture with belief changes, and the
reductions in debt financing that result: “Years after US investment bank
Lehman Brothers collapsed, triggering a global financial crisis and shat-
tering confidenceworldwide . . . ‘The attitude toward risk is permanently
reset.’A flight to safety on such a global scale is unprecedented since the
end of World War II” (Condon 2013).
In many macro models, including belief-driven ones, deviations of

aggregate variables from trends inherit the exogenously specified persis-
tence of the driving shocks (see, e.g., Maćkowiak and Wiederholt 2010;
Angeletos and La’O 2013).2 Therefore, these theories cannot explain why
interest rates remain persistently low. In our setting, when agents repeat-
edly reestimate the distribution of shocks, persistence is endogenous and
state dependent. Extreme events like the recent crisis are rare and thus lead

The Tail That Keeps the Riskless Rate Low 255



to significant belief changes (and, through them, aggregate variables such
as riskless rates) that outlast the events themselves. More “normal” events
(e.g.,milder downturns), in contrast, showup relativelymore frequently in
the agents’ data set, and therefore additional realizations have relatively
small effects on beliefs. In other words, although all changes to beliefs
are, in a sense, long-lived, rarer events induce larger,more persistent belief
changes and interest rate responses. Rare event beliefs are more persistent
because rare event data are scarce. It takes many observations without a
rare event to convince observers that the event ismuchmore rare than they
thought.
Thismechanism for generating persistent responses to transitory shocks

is simple to execute and can be easily combined with a variety of sophisti-
cated, quantitative macro models to introduce persistent effects of rarely
observed shocks. Although our focus in this paper is on interest rates, it
could be applied to other phenomena, including labor force participation
rates, corporate debt issuance and cash hoarding, house prices, export de-
cisions, and trade credit. The crucial ingredientsof themodel are somenon-

Fig. 2. The SKEW index. A measure of the market price of tail risk on the S&P 500, con-
structed using option prices (CBOE 2019).
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linearity (typically, a constraint that binds in bad states), some actions that
compromise efficiency in the current state but that hedge the risk of this
binding state, and then a large, negative shock. If those ingredients are
present, then adding agents who learn like econometricians is likely to in-
duce sizeable, persistent responses.
Because the novel part of the paper is using this belief formation mech-

anism to explore interest rates, Section II starts by examining the belief for-
mationmechanism in a simple context.We construct a time series of “qual-
ity” shocks to US nonresidential capital and use it to show how our
nonparametric estimationworks. Agents estimate the underlying distribu-
tion of the shocks by fitting a kernel density function to the data in their
information set. When they see extreme negative realizations from the fi-
nancial crisis, it raises their estimation of large negative outcomes. More
important, this effect is persistent. The theoretical underpinning of the per-
sistence is themartingale property of beliefs. Intuitively, once observed, an
event stays in the agents’data set and informs their probability assessment,
even after the event itself has passed. Decades later, the probability distri-
bution still reflects a level of tail risk that is higher than it was precrisis.
Knowing that a crisis is possible influences risk assessment formany years
to come.
We embed this mechanism into a standard production economy with a

liquidity friction. Every period, in addition to their usual production, firms
have access to an additional investment opportunity. However, to exploit
this opportunity, they need liquidity in the form of pledgeable collateral.
Both capital and government bonds act as collateral, but only a fraction
of the former’s value can be pledged. An adverse shock lowers the value
of pledgeable capital and, therefore, liquidity.
SectionVpresents our quantitative results.We perform two sets of ex-

ercises. The first involves long-run predictions under the assumption
that crises continue to occur. Specifically, we simulate long-run out-
comes (i.e., stochastic steady states) drawing shocks from the updated
beliefs. Our calibrated model predicts that the increase in tail risk is as-
sociated with a 1.45% drop in interest rates on government bonds in the
long run.Most of this drop can be attributed to the liquiditymechanism.
Themodest degree of risk aversion in our calibration implies that the in-
crease in consumption risk by itself induces only a very small change
in interest rates. We also show that the implications of the model for
changes in equity market variables (e.g., equity premium, tail risk im-
plied by options) line up reasonably well with the data.
Next, we generate time paths for the economy under the assumption

that thefinancial crisiswe saw in 2008–9was a one-off event andwill never

The Tail That Keeps the Riskless Rate Low 257



recur. Then, the economy eventually returns to its precrisis stochastic
steady state, but we show that this occurs at a very slow rate. Even after
several years, interest rates on safe assets remain depressed. Intuitively,
learning about rare events is, in a sense, “local”: probabilities in the tail re-
spond sharply to extreme realizations but slowly to realizations from else-
where in the support. As a result, it takes a very long period without ex-
treme events to convince agents that such events can be safely ignored.
Finally, to demonstrate that belief revisions are key to the model’s ability
to generate sustained drops in interest rates, we also generate counterfac-
tual time paths with the belief mechanism turned off. In other words, we
endowagentswithknowledge of the true distribution from the very begin-
ning.We find that the initial impact of the shock on interest rates is similar,
but they start to rebound almost immediately and return to precrisis levels
at a much faster rate. In other words, without changes to beliefs, the finan-
cial crisis would induce a fairly transitory fall in interest rates.

Comparison to the Literature

Our paper speaks to a large body of work that focuses on the macroeco-
nomic consequences of beliefs.3 Most of these papers focus on uncertainty
(or second-moment changes) and, perhaps more important, rely on exog-
enous assumptions about the persistence of shocks for propagation. Essen-
tially, beliefs about time-varying states are only persistent to the extent that
the underlying states are assumed tobepersistent.4 Ourmechanism, on the
other hand, generates persistence endogenously and helps explain why
some recessions have long-lasting effectswhile others do not.A second ad-
vantage of our contribution is that by tying beliefs to observable data, we
are able to impose considerable empirical discipline on the role of belief re-
visions, a key challenge for this whole literature.
The nonparametric belief formation process specified in this paper is

similar to other adaptive learning approaches. Kozlowski, Veldkamp,
andVenkateswaran (2017) use a similar belief formationmechanism to ex-
plain persistence in real output fluctuations. That paper, however, ab-
stracts from liquidity, an important amplification mechanism, and there-
fore cannot match the large decline in the riskless rate. In constant gain
learning (Sargent, 1999), agents combine last period’s forecast with a con-
stant times the contemporaneous forecast error. Such aprocess gives recent
observationsmoreweight, similar to the behavior of agents inMalmendier
andNagel (2011) following theGreatDepression. The reasonwhyweuse a
nonparametric belief formation process is that we want to model time-
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varying changes in perceived tail risk, which requires a richer specification
of the distribution of state variables.
Our belief formation process also has similarities to the parameter learn-

ing models by Johannes, Lochstoer, and Mou (2016) and Orlik and Veld-
kamp (2015) and is advocated byHansen (2007). Similarly, in least-squares
learning (Marcet and Sargent 1989), agents have bounded rationality and
use past data to estimate the parameters of the law of motion for the state
variables. However, these papers do not have meaningful changes in tail
risk and do not analyze the potential for persistent effects on interest rates.
Pintus and Suda (2015) embed parameter learning into a production econ-
omy but feed in persistent leverage shocks and explore the potential for
amplification when agents hold erroneous initial beliefs about persis-
tence. Sundaresan (2018) generates persistence by deterring information
acquisition.Weitzman (2007) shows that the parameter uncertainty about
the variance of a thin-tailed distribution can help resolve many of the as-
set pricing puzzles confronted by the rational expectations paradigm.
Finally, our paper contributes to a growing literature on low inter-

est rates. Recent contributions include Bernanke et al. (2011), Barro et al.
(2014), Bigio (2015), Caballero, Farhi, and Gourinchas (2016), Carvalho,
Ferrero, andNechio (2016), Del Negro et al. (2017), andHall (2017). To this
body of work, we add a novel mechanism, one that predicts persistent
drops in riskless interest rates in response to rare transitory shocks, and
demonstrate its quantitative and empirical relevance.

II. How Belief Updating Creates Persistence

The main contribution of this paper is to explain why tail risk fluctuates
and to show how an extreme event like the Great Recession can induce a
persistent drop in riskless rates. Before laying out the whole model, we be-
gin by explaining the novel part of the paper: how agents form beliefs and
the effect of tail events onbeliefs. Thiswill highlight the broader insight that
unusual events induce larger andmore persistent belief changes. Later, we
layer the economic model on top to show how this mechanism affects in-
terest rates.
The story that this model formalizes is that before the financial crisis hit,

most people in the United States thought that such crises only happened
elsewhere (e.g., in emerging markets) and that bank runs were a topic
for historians. Observing the events of 2007–9 changed those views. Many
journalists, academics, and policy makers now routinely ask whether the
financial architecture is stable. But formalizing this story requires a depar-
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ture from the standard rational expectations paradigm, where the distri-
butions of all random events are assumed to be known. Then, observing
an unusual event should not change one’s probability assessment of that
event in the future. Instead, we need a machinery that allows agents to
not know the true distribution, so that upon seeing something they
thought should not happen, they can revise their beliefs. There are many
ways to depart from full knowledge of distributions. One that is realis-
tic, quantifiable, and tractable is treating agents like classical econometri-
cians. The agents in our model have a finite data set—the history of all
realized shocks—and they estimate the distribution from which those
shocks are drawn, using tools from a first-year econometrics class.
Learning models are not new to the macro literature. A common ap-

proach is to assumeanormal distribution and to estimate itsmean andvar-
iance.However, the normal distribution has thin tails,making it less useful
to think about changes in the risk of extreme negative realizations. We
could choose an alternative distributionwithmoreflexibility in highermo-
ments. However, this will raise obvious concerns about the sensitivity of
results to the specific functional form used. To minimize such concerns,
we take a nonparametric approach and let the data inform the shape of
the distribution.
Instead, our agents take all the data they have observed and use a kernel

density procedure to estimate the probability distribution from which
these data were drawn. One of the most common approaches in nonpara-
metric estimation, a kernel density essentially takes a histogram of all ob-
served data and draws a smooth line over that histogram. There are a va-
riety of ways to smooth the line. The most common is called the “normal
kernel.” It does not result in normal (Gaussian) distributions.We also stud-
ied a handful of other kernels and (sufficiently flexible) parametric specifi-
cations, which yielded similar results.5 The kernel density approach allows
for flexibility in the shape of the distribution while strictly tying the learn-
ing process to data that we, as economists, can observe. We do not need to
guess or calibrate the precision of some signal. Instead, we take a macro
data series, apply this econometric procedure to it, and read off the agents’
beliefs.
Next, we describe the Gaussian kernel. Consider the shock ft whose

true density g is unknown to agents in the economy. The agents do know
that the shockft is independent and identically distributed (i.i.d.). The in-
formation set at time t, denoted It, includes the history of all shocks ft ob-
served up to and including t. They use this available data to construct
an estimate ĝ t of the true density g. Formally, at every date t, agents con-
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struct the following normal kernel density estimator of the probability
density function g:

ĝ t(f) =
1
ntkt
S
nt-1

s=0
V

�
f - ft-s

kt

�
,

whereV(�) is the standard normal density function, kt is the smoothing or
bandwidth parameter, and nt is the number of available observations at
date t. As new data arrive, agents add the new observations to their data
set and update their estimates, generating a sequence of beliefs { ĝ t}.
Finally, back to the main point: Why does this estimated distribution

change in such a persistent way in response to a tail event? We will ex-
plain this graphically and then mathematically. Figure 3 shows three
panels. Figure 3a is the histogram of a data series. In this case, the data
series happens to have some measures of capital quality, which we will
describe in detail later. For right now, this is an arbitrary sequence of
data generated from an unknown distribution. The smooth line over
the histogram is the estimated normal kernel. Figure 3b shows what
happens when two data points that are negative outliers are observed.
The locations of the two new observations are highlighted (black rectan-
gles) in the histogram. Notice that the new kernel estimator, and thus
agents’ beliefs, now places greater probability weight on the possibility
of future negative outcomes. If in the next period the state returns to nor-
mal, those two rectangular data points are still in the histogram and still
create the bump on the left. Although the tail event has passed, tail risk
remains elevated. Figure 3c adds 30 years of additional observations,
drawn to look just like the preceding years, except without any crisis
events. The kernel on the right still shows a left bump. Smaller than it
was before, but still present, elevated tail risk still persists 30 years after
the tail event was observed.
The persistence in figure 3 has its origins in the so-called martingale

property of beliefs—that is, conditional on time t information (It), the es-
timated distribution is amartingale. Thus, on average, the agent expects
her future beliefs to be the same as her current beliefs. This property
holds exactly if the bandwidth parameter kt is set to zero.6 In our empir-
ical implementation, in line with the literature on nonparametric as-
sumption, we use the optimal bandwidth (see Hansen 2015). This leads
to smoother density but also means that the martingale property does
not hold exactly. Numerically, the deviations are minuscule for our ap-
plication. In other words, the kernel density estimator is, for all practical
purposes, a martingale Et½ ĝ t+j(f)jI t� ≈ ĝ t(f).
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Fig. 3. Thepersistence of estimated probabilities. (a) Period 1950–2007. (b) Period 1950–2009.
(c) Period 1950–2039. Data in the histograms are capital quality shocks,measured as described
in Sec. IV. Kernel densities are constructedwith the normal kernel in (3) and the optimal band-
width.



Now, in the simulations underlyingfigure 3c, we drew future shock se-
quences from the precrisis distribution (i.e., ĝ 2007 instead of the revised be-
lief ĝ 2009). This implies that beliefswill revert, namely, the bump in the left
tail will eventually disappear. However, the rate at which this occurs is
very slow. This has to do with the fact that under our nonparametric ap-
proach, outlier observations play a crucial role in learning about the fre-
quency of tail events. Ordinary events are just not very informative about
those tail probabilities. And since data on tail events are scarce, observing
one makes the resulting belief revisions large and extremely persistent
(even if they are ultimately transitory). It is worth pointing out that this
slow convergence need not necessarily obtain with a parametric specifi-
cation of the learning process. For example, suppose there is uncertainty
about the standard deviation of a thin-tailed distribution, as inWeitzman
(2007). Because all realizations are informative about standard devia-
tions, the effect of observing a tail event is more muted (i.e., there is a
lot more relevant data) and relatively less persistent (convergence to
the true distribution occurs at a faster rate).

III. Model

Preferences and Technology

The economy is populated by a representative firm, which produces out-
put with capital and labor, according to a standardCobb-Douglas produc-
tion function:

Yt = AKa
t N1-a

t , (1)

where A is total factor productivity, which is the same for all firms and
constant over time. The firm is subjected to an aggregate shock to capital
quality ft: formally, it enters the period with capital K̂t and is hit by a
shock ft, leaving it with “effective” capital Kt:

Kt = ftK̂t: (2)

These capital quality shocks are i.i.d. over time and are the only aggre-
gate disturbances in our economy. The i.i.d. assumption is made to avoid
an additional exogenous source of persistence.7 They are drawn fromadis-
tribution g(⋅): this is the object agents are learning about.
As we see from equation (2), these shocks scale the effective capital

stock up or down. This is not to be interpreted literally—it is hard to vi-
sualize shocks that regularly wipe out fractions of the capital or create it
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out of thin air. Instead, these shocks are a simple, if imperfect, way to
model the extreme and unusual effects of the 2008–9 recession on the eco-
nomic value and returns to nonresidential capital. It allows us to capture
the idea that a hotel built in 2007 in Las Vegas may still be standing after
theGreatRecession butmaydelivermuch less economic value. Theuse of
such shocks in macroeconomics and finance goes back at least to Merton
(1973), but they have become more popular recently (precisely to gener-
ate large fluctuations in the returns to capital), for example, in Gourio
(2012) and in a number of recent papers on financial frictions, crises,
and the Great Recession (e.g., Gertler and Kiyotaki 2010; Gertler and
Karadi 2011; Brunnermeier and Sannikov 2014).
Finally, the firm is owned by a representative household, the prefer-

ences of which over consumption Ct and labor supply Nt are given by a
flow utility function U(Ct, Nt), along with a constant discount rate b.

Liquidity

We now introduce liquidity considerations, which will act as an ampli-
fication mechanism for tail risk changes. We model them in a stylized
but tractable specification in the spirit of Lagos and Wright (2005): firms
have access to a productive opportunity but require liquidity in the
form of pledgeable collateral in order to exploit it. As in Venkateswaran
and Wright (2014), both capital and riskless government bonds can be
pledged, albeit to different degrees. Bonds are fully pledgeable, but only
a fraction of the effective capital can be used as collateral. An increase
in tail risk now has an additional effect—it reduces the liquidity value
of capital, increasing the demand for an alternative source of liquidity,
namely, riskless government bonds, amplifying the interest rate response.
Formally, at the beginning of each period, firms can invest in a project

that costs Xt and yields a payoff H(Xt) (both denominated in the single
consumption/investment good). The functionH is assumed to be strictly
increasing and concave, which implies that the net surplus from the proj-
ect, namely, H(X ) - X, has a unique maximum at X*. In the absence of
other constraints, therefore, every firm presented with this opportunity
will invest X*. However, the firm faces a liquidity constraint:

Xt ≤ Bt + hKt

In other words, the investment in the project cannot exceed the sum of
pledgeable collateral, which comprises a fraction h of its effective capital
Kt and the value of its liquid assets (riskless government bonds) Bt.8
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Therefore,

Xt = min (X*, Bt + hKt):

After this stage, production takes place according to equation (1).

Timing and Value Functions

The timing of events in each period t is as follows: (i) the firm enters the
period with capital stock K̂t and liquid assets Bt, (ii) the aggregate capital
quality shock ft is realized, (iii) the firm choosesXt subject to the liquidity
constraint, (iv) the firm chooses labor and production takes place, and
(v) the firm chooses capital and liquid asset positions for t + 1.
Denoting the aggregate state St (described in detail later in this section),

the economy-wide wage rateWt, the price of the riskless bond Pt, and the
stochastic discount factorMt+1, we canwrite the problem of the firm in re-
cursive form as follows:

V(Kt, Bt, St) = max
Xt ,Nt ,Bt+1,K̂ t+1

H(Xt) - Xt + F(Kt,Nt) - WtNt + Kt(1 - d) + Bt

     - PtBt+1 - K̂ t+1 + bEtMt+1V(Kt+1, Bt+1, St+1)

s:t: Xt ≤ Bt + hKt,

Kt+1 = ft+1K̂ t+1:

(3)

The stochastic discount factor Mt+1 and the wage Wt are determined by
the marginal utility of the representative household:

Wt = -
U2(Ct,Nt)
U1(Ct,Nt)

, (4)

Mt+1 =
U1(Ct+1,Nt+1)
U1(Ct,Nt)

: (5)

The aggregate state St consists of (Pt, It), where Pt ; H(Xt) - Xt +
AKa

t L1-a
t + (1 - d)Kt is the aggregate resources available and It is the

economy-wide information set. Standard market clearing conditions
yield:

Ct = Pt - K̂ t+1, (6)

Bt = �B: (7)
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where �B is the exogenous supply of the riskless government bond. The
interest expenses on these bonds is financed through lump-sum taxes.

Information, Beliefs, and Equilibrium

The set It includes the history of all shocks ft observed up to and includ-
ing time t. For now, we specify a general function, denoted C, which
maps It onto an appropriate probability space. The expectation operator
Et is definedwith respect to this space. In the following section, wemake
thismore concrete using the kernel density estimation procedure tomap
the information set into beliefs.
For a given belief function C, a recursive equilibrium is a set of func-

tions for (i) aggregate consumption and labor supply that maximize
household utility subject to a budget constraint; (ii) a bond price that
clears themarket for bonds; (iii) firm values and policies that solve equa-
tion (3), taking as given the stochastic discount factor andwages accord-
ing to equations (4)–(5) and the bond price; and (iv) aggregate consump-
tion and labor that are consistent with individual choices and thus the
bond market clears.

Characterization and Solution

The equilibrium of the economic model is a solution to a set of nonlinear
equations, namely, the optimality conditions of the firm and the house-
hold, along with resource constraints. The optimality conditions of the
firm (3) are:

1 = bEt Mt+1ft+1 F1(Kt+1,Nt+1½ Þ + 1 - d + hmt+1f �g, (8)

Pt = bEt Mt+1(1 + mt+1f Þg, (9)

mt = H0(Xt) - 1, (10)

Wt = F2(Kt,Nt), (11)

where mt is the Lagrange multiplier on the liquidity constraint. The first
two equations are the Euler equations for capital and liquid assets, respec-
tively. The value of liquidity services is reflected on the right-hand side (in
the term involving mt). The third equation characterizes mt. In states of the
world where liquidity is sufficiently abundant, Xt = X* and mt = 0. Other-
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wise, mt > 0. The expectation of mt+1 (weighted by the SDF Mt+1) raises the
price of the liquid bond Pt, or, equivalently, lowers the risk-free rate. An
increase in tail risk—namely, the likelihood of large adverse realizations
of ft+1—makes the constraint more likely to bind and thus raises the li-
quidity premium on the riskless bond.

Belief Formation

Next,we choose a particular estimation procedure for howagents formbe-
liefs. Specifically, we employ the kernel density estimation procedure,
which we described in Section II.
Consider the shock ft for which true density g is unknown to agents in

the economy. The agents do know that the shockft is i.i.d. The information
set at time t, denoted It, includes the history of all shocks ft observed up to
and including t. They use these available data to construct an estimate ĝt of
the true density g. Formally, at every date t, agents construct the following
normal kernel density estimator of the probability density function g:

ĝ t(f) =
1
ntkt
S
nt-1

s=0
V

�
f - ft-s

kt

�
,

whereV(∙) is the standard normal density function, kt is the smoothing or
bandwidth parameter, and nt is the number of available observations at
date t. As new data arrive, agents add the new observations to their data
set and update their estimates, generating a sequence of beliefs { ĝt}.

IV. Measurement and Calibration

In this section, we describe how we use macro data to construct a time
series for ft and pin down beliefs. A key strength of our belief-driven the-
ory is that by assuming that agents form beliefs as an econometrician
would,we can use observable data to discipline those beliefs.We also pa-
rameterize the model to match key features of the US economy and de-
scribe key aspects of our computational approach.

Measuring Capital Quality Shocks

To construct a time series of ft, we follow the approach in Kozlowski
et al. (2017). They used data on nonfinancial assets in the US economy,
reported in the “Flow of Funds” tables, both at historical cost, which we
will denote NFAHC

t , and at market value, NFAMV
t . The latter series corre-
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sponds to the nominal value of effective capital, Kt in the model. Letting
Xt-1 denote investment in period t - 1 and Pk

t denote the nominal price of
capital goods in t, the two time series can be mapped onto their model
counterparts as follows:

Pk
tKt = NFAMV

t

Pk
t-1K̂ t = (1 - d)NFAMV

t-1 + Pk
t-1Xt-1

= (1 - d)NFAMV
t-1 + NFAHC

t - (1 - d)NFAHC
t-1 :

To adjust for changes in nominal prices, we use the price index for non-
residential investment from the National Income and Product Accounts
(denoted PINDXt).9 This allows us to recover the quality shock ft:

ft =
Kt

K̂ t

=
�

Pk
tKt

Pk
t-1K̂ t

��
Pk
t-1

Pk
t

�

=
�

NFAMV
t

(1 - d)NFAMV
t-1 + NFAHC

t - (1 - d)NFAHC
t-1

��
PINDXk

t-1

PINDXk
t

�
,

(12)

where the second line replaces Pk
t-1=Pk

t with PINDXk
t-1=PINDXk

t .
Using the measurement equation (12) (and a value of d = 0.03), we con-

struct an annual time series for capital quality shocks for the US economy
since 1950, plotted in figure 4a. Formost of the sample period, the shock re-
alizations were in a relatively tight range around 1, but at the onset of the
recent Great Recession, we saw two large adverse realizations: 0.93 in
2008 and 0.84 in 2009. To put these numbers in context, the mean and stan-
dard deviation of the series from 1950–2007 were 1 and 0.03, respectively.
We then apply our kernel density estimationprocedure to this time series

to construct a sequence of beliefs. In other words, for each t, we construct
{ ĝt} using the available time series until that point. The resulting estimates
for two dates, 2007 and 2009, are shown in figure 4b. They show that the
Great Recession induced a significant increase in the perceived likelihood
of extreme negative shocks. The estimated density for 2007 implies al-
most zeromass below 0.90, whereas the one for 2009 attaches a nontrivial
(approximately 2.5%) probability to this region of the state space.

Calibration

We begin by specifying the functional form of preferences and technol-
ogy. The period utility function of the household isU(C,N) = {C – [N1+g/
(1 + g)]}/1 - j. The risk aversion parameter s is set to 0.5. The payoff
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from the project isH(X) = 2z
ffiffiffiffi
X

p
- y. The labor supply parameter g is set

to 0.5, corresponding to a Frisch elasticity of 2 in line withMidrigan and
Philippon (2011). The labor disutility parameter p is normalized to 1.
The parameter j acts like a fixed cost and separates the liquidity pre-
mium (which is a function only of H0[X]) from the level of the net sur-
plus, a flexibility that proves helpful in the calibration process.
Aperiod is interpretedas1year.Accordingly,wechoose thediscount fac-

tor b = 0.95 and depreciation d = 0.03. The share of capital in the production
is set to 0.40, while the total factor productivity parameter A is normalized
to 1.
Next, we turn to the liquidity-related parameters. The parameter gov-

erning the pledgeability of capital h is set to match the ratio of short-term
obligations of US nonfinancial corporations to the capital stock in the
Flow of Funds. Short-term obligations comprise commercial paper
(BGFRS 2017, table B.103, row 27), bank loans (row 31), and trade payables
(row 34). Capital stock is the market value of nonfinancial assets (row 2).
This ratio stood at 0.16 in 2007.10

There are three other parameters to be determined: the supply of liquid
assets �B and the technology parameters z and j. These are chosen to jointly
target the following moments: (i) the ratio of liquid asset holdings of US
nonfinancial corporations, which stood at 0.082 in 2007;11 (ii) an interest
rate of 2% on government bonds (which corresponds to the precrisis aver-
age for real interest rates in the United States); and (iii) a capital-output ra-
tio of 3.5. In themodel, the analogous objects are averages in the stochastic
steady state under the precrisis belief distribution. Though this calibration
is done jointly, a heuristic argument can be made for identification—the
firstmoment is informative about �B, the second about z, and the thirdhelps
us pin down j. Table 1 summarizes the resulting parameter choices.

V. Results

Ourmain goal in this section is to quantify the size and persistence of the
response of risk-free rates to a large but transitory shock ft in an economy
where agents are learning about the distribution.We begin by computing
the stochastic steady state associatedwith ĝ 2007, the distribution estimated
using precrisis data.12 Then, starting from this steady state, we subject the
model economy to the two adverse realizations observed in 2008 and
2009, namely, 0.93 and 0.84. As we saw in the previous section, this leads
to a revised estimate for the distribution ĝ 2009, which shows an increase in
perceived tail risk.
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We perform two exercises to demonstrate the quantitative bit of our
belief revision mechanism. First, we compare the stochastic steady
states implied by the two distributions ĝ 2007 and ĝ2009 for both aggregate
macroeconomic quantities (e.g., output, capital, and labor) and asset
prices. This corresponds to the long-term behavior of the US economy
under the assumption that crises continue to occur with the same like-
lihood as the updated beliefs (formally, if future shocks are drawn from
the postcrisis distribution ĝ 2009). Second, we simulate time paths for
the economy under the assumption that there are no future crises,
namely, with future shocks drawn from the precrisis distribution ĝ 2007.
In other words, we assume that the 2008–9 recession was a one-off ad-
verse realization. As a result, beliefs will eventually revert to their pre-
crisis levels. However, the effects of the tail events in 2008–9 on beliefs
(and, therefore, aggregate outcomes) turn out to be quite persistent and
remain significant over a relatively long horizon.

Long-Run Analysis

The results from the first exercise, where we compare long-run averages
under ĝ 2007 and ĝ 2009, are reported in table 2. As the table shows, the rise
in tail risk causes the economy to invest and produce less, leading to
lower output and capital. This occurs because investing nowhas a lower
mean return but is also significantly riskier. The change in beliefs leads
to a sharp drop in the risk-free rate—in the new steady state, govern-
ment bond yields are almost 1.3% lower. Two forces contribute to this

Table 1
Parameters

Parameter Value Description

Preferences:
b .95 Discount factor
g .50 1/Frisch elasticity
p 1 Labor disutility
s .5 Risk aversion

Technology:
a .40 Capital share
d .03 Depreciation rate

Liquidity:
h .16 Pledgeability of capital
�B 4.93 Supply of liquid assets
z 3.93 Investment technology (affects liquidity)
j 9.00 Investment fixed cost
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drop. First, future consumption is riskier, which has the usual effect of
lowering the required return on risk-free claims. Second, the liquidity
premium rises. This is partly because there is less liquidity in the econ-
omy (due to the lower levels of capital in the new steady state), but also
due to the increase in liquidity risk. A tail event also implies states with
very low levels of liquidity, which translates to a higher premium on liq-
uid assets.
How do these predictions compare with the post-2008 data? The first

row of table 3 compares the drop in interest rates predicted by the model
to different measures of changes in risk-free rates since the Great Reces-
sion. The second row reports the change from 2007 to 2017 in short-term
real rate. This is defined as the difference between 1-year nominal Trea-
sury yield (taken from theH15 release [BGFRS 2019, tableH15]) and 1-year
expected inflation from the Federal Reserve Bank of Cleveland’s inflation
forecasting model. The next three rows contain estimates of changes in

Table 2
Steady State Interest Rates and Macro Aggregates, Pre- and Postcrisis

ĝ 2007 ĝ 2009 Change

ln F(K, N) 2.39 2.36 -.03
ln X 2.68 2.65 -.03
ln K 4.10 4.06 -.04
Riskless rate (Rf ) 2.31 .86 -1.45
Return on capital (Rv) 5.30 5.29 -.01
Premium (Rv – Rf ) 2.99 4.43 1.44

Note: Rf is the interest rate on government bonds, whereas Rv is the av-
erage expected returns on unlevered claims to the firm.

Table 3
Interest Rates, Model and Data

Change, %

Model:
Riskless rate, Rf -1.45

Data:
1-year real rate -2.48
5-year real rate, 5 years forward -1.57
5-year real rate, 5 years forward (HP trend) -1.78
Natural real rate* -.66
Liquidity premium* .52

Note: The changes in the data panel are differences between
average levels in 2017 and 2007.
*From Del Negro et al. (2017).
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longer-term real rates. The third row shows the change in the 5-year real
rates 5 years forward. To estimate this, we use the nominal 5-year rate
5 years forward (computed from the constant maturity nominal Trea-
sury yield curve) and the corresponding expected inflation (i.e., the ex-
pected 5-year inflation rate 5 years forward, which can be computed us-
ing the 5- and 10-year expected inflation series from the Federal Reserve
Bank of Cleveland). The fourth row reports the change in the Hodrick–
Prescott-trend component of the 5-year real rate 5 years forward (com-
puted using annual data from1982–2017with a smoothing parameter of 6).
Thefifth rowshows the change in the estimate of the long-run natural rate
from Del Negro et al. (2017), who use a flexible VAR specification to ex-
tract the permanent component of the real interest rate from data on nom-
inal bond returns, inflation, and their long-run survey expectations (from
the Survey of Professional Forecasters).13 Taken together, the data show
that belief revisions can go long a way in explaining the drop in interest
rates since the financial crisis.
For macroeconomic quantities, the predicted drops in table 2 gener-

ally underpredict the deviations from precrisis trends observed in the
data. For example, at the end of 2017, output was about 14% below
the 1952–2007 trend. This suggests a need for additional amplification
mechanisms. In our related work in Kozlowski et al. (2017), we explore
two such mechanisms—Epstein-Zin utility (which allows us to sepa-
rate risk aversion and intertemporal elasticity of substitution) and de-
faultable debt (higher tail risk makes default debt less attractive, curtail-
ing borrowing and investment)—and show that they help bring the
model’s predictions much closer to the data. Here, given our focus on
interest rates, we abstract from these modifications. This allows us to
highlight, in a more transparent fashion, the interaction of tail risk with
liquidity considerations.

Role of Liquidity

To understand the role played by liquidity, we repeat the analysis
above, setting the pledgeability of capital to 0. This implies that shocks
to capital do not directly affect the available liquidity in the economy
(because bonds are the only liquid asset in the economy). The remaining
parameters are calibrated using the same strategy as before. The results
are shown in table 4. The table shows that without liquidity effects, the
increase in tail risk has a very small effect on the riskless rate. The inter-
est rate on government bonds in the new steady state is only 2 basis
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points lower. In other words, almost all of the drop in our baseline anal-
ysis comes from the interaction of tail risk and liquidity.14 This finding is
consistent with that of Del Negro et al. (2017), who find that most of the
change in the natural real rate comes from a rise in the convenience yield
associated with US government bonds. Their VAR estimate is reported
in the last row of table 3 (labeled “liquidity premium”)—the change in con-
venience yield since 2007 constitutes almost 80% of the drop in real rates.15

Comparing the implications for macroeconomic aggregates in tables 2
and 4 shows that liquidity dampens the effect of increased tail risk on cap-
ital and output (the predicted drops in table 4 are smaller). Intuitively,
when capital also provides liquidity, an increase in tail risk induces a pre-
cautionary response—firms hold more capital to buffer against the drop
in liquidity due to an adverse shock. As a result, steady-state capital (and,
therefore, output) does not fall by asmuch as itwould have in the absence
of liquidity considerations.

Evidence from Equity Markets

Ourmodel stays relatively close to the standardneoclassical paradigmand
inherits many of its limitations when it comes to matching asset pricing
facts, particularly asset price volatility.16 With that caveat inmind, we con-
front the model’s predictions for equity markets with the data in table 5.
To do this, we interpret equity as a levered claim on the value of the

firm in themodel. Themain role of leverage is to amplify the volatility of
equity returns. We use a leverage (defined as the ratio of debt to total as-
sets) of 0.8. This is higher than most estimates in the literature—for ex-
ample, Kozlowski et al. (2017) use 0.7, an estimate that combines oper-
ating and financial leverage. We discuss the reasons behind the higher
leverage assumption later.

Table 4
Interest Rates and Macro Aggregates in the Long Run, without Liquidity Effects

ĝ 2007 ĝ 2009 Change

ln F(K, N) 2.27 2.19 -.09
ln X 1.29 1.29 .00
ln K 3.93 3.80 -.13
Riskless rate (Rf ) 2.31 2.29 -.02
Risky return (Rv) 5.28 5.27 -.01
Risk premium (Rv – Rf ) 2.97 2.98 .01

Note: Rf is the interest rate on government bonds, whereas Rv is the average ex-
pected returns on unlevered claims to the firm.
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The implications of the model for various equity market variables are
shown in table 5. The increase in tail risk leads to a slight fall in the expected
return on equity claims in the new steady state. Because rates on riskless
assets drop significantly, this implies a big rise in the equity premium. In
data, expected returns on the S&P 500, computed following themethodol-
ogy of Cochrane (2011) and Hall (2015), also show a small drop relative to
precrisis levels.17 The small drop in expected returns also means that the
model-implied value of equity claims (per unit capital) is actually higher
in the new steady state. In the data, we observe a much larger run-up in
equity prices over the past few years. We are not claiming that the model
can rationalize such a large increase, but it is worth noting that increased
tail risk does not necessarily imply a precipitous fall in valuations.
Evidence of returns and valuations is at best a very indirect measure of

tail risk. We therefore turn to options prices, arguably a better source of
evidence of changes in tail risk. The model, even with the relatively high
leverage adjustment, does not generate sufficient variability in equity re-
turns. Themodel-implied value for the Chicago BoardOptions Exchange
(CBOE) Volatility Index (VIX) under the pre-2008 beliefs is 8.37 (the aver-
age from 1990–2007 in the datawas 19). Furthermore, in the data, the VIX
spiked in the immediate aftermath of the crisis, averaging 32 during
2008–9, but then fell sharply to historically low levels in 2017. Themodel,
on the other hand, predicts a more modest but persistent increase (from
8.37 to 11.35). The SKEW index reported by the CBOE (2019) is a transfor-
mation of the standardized third moment:

SKEWt = 100 - 10
E(Re - �Re)3

(VIXt=100)3
:

Table 5
Implications for Equity Markets

Changes

Model Data

Return on equity, E(Re) (%) -.065 -.184
ln equity/capital .010 .225
E(Re - �Re)3 -.002 -.002
Pr(Re - �Re ≤ -0:30) .022 .015

Note: The model changes represent the difference between the average
value under ĝ 2009 and that under ĝ 2007. The change in the data is the differ-
ence between the average value from 2013 through 2017 and the precrisis
average (from 2005 to 2007).
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Because this is a function of the VIX, themodel’s difficulty inmatching the
time variation in the VIX also spills over to the SKEW index. For example,
the SKEW spiked in part due to the sharp drop in VIX. Fixing these issues,
that is,matching the levels and timevariation in volatilitymeasures,would
require adding more shocks—almost certainly with heteroskedastic pro-
cesses—andmechanisms to address the well-known excess volatility puz-
zles, an exercise beyond the scope of the current paper. Instead, we use the
two reported indexes to construct two indicators of tail risk—namely, the
nonstandardized thirdmoment of the risk-neutral distribution (the numer-
ator in the second termof the SKEWequation above) and the (risk-neutral)
probability of an extreme negative return realization (defined as 30% be-
low the mean).18 As table 5 shows, the model predicts significant increases
in both objects. These predictions line up reasonablywellwith the changes
in their empirical counterparts relative to their precrisis levels. In other
words, while the model cannot exactly match the time path of asset mar-
ket variables, the evidence from assetmarkets appears to be broadly con-
sistent with the idea that tail risk rose sharply since 2008.

What If There Are No More Crises?

Next, we compute time paths for riskless interest rates, starting from the
average long-run values under ĝ 2007. These paths are generated using two
different assumptions about future shocks. The first corresponds to the
stochastic steady-state analysis from earlier and draws shocks from the
updated belief distribution ĝ2009. The second assumes that crises do not
recur—that is, the shock sequences drawn from ĝ 2007. For each sequence
of shocks, we compute beliefs, equilibrium prices, and quantities at each
date. Finally, we average over all these paths and plot themean change in
interest rates (relative to the starting level) in figure 5a and 5b (“learning”
line). It shows that under both assumptions, they remain depressed for a
prolonged period. In the no-crisis version (fig. 5b), although the economy
eventually returns to its precrisis stochastic steady state, learning about
tail probabilities is sufficiently slow that interest rates are almost 1% lower
20 years after the crisis. This occurs because learning about tail events is
“local” under our nonparametric approach: beliefs about the likelihood
change a lot when such events are observed but are less responsive to re-
alizations elsewhere in the support of the distribution. In contrast, if we
imposed a parametric assumption (e.g., a normal distribution), then all
realizations contain information about parameters (mean and variance)
and so beliefs (and, therefore, interest rates) would converge back to their
precrisis levels relatively quickly.
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Turning Off Belief Updating

To demonstrate the central role of learning, we also plot average simu-
lated outcomes from an otherwise identical economy in which agents
know the final distribution ĝ2009 with certainty from the very beginning
(“no learning” line in fig. 5). These agents do not revise their beliefs. This
corresponds to a standard rational expectations econometrics approach,
in which agents are assumed to know the true distribution of shocks hit-
ting the economy and econometricians estimate this distribution using
all available data. The post-2009 paths are simulated as follows: Each
economy is assumed to be at its stochastic steady state in 2007 and is
subjected to the same sequence of shocks—two large negative ones in
2008 and 2009. After 2009, the sequence of shocks is drawn from the es-
timated 2009 distribution.
In the absence of belief revisions, the negative shock causes the real

rate to surge and then recover. The interest rate rises because as the econ-
omy recovers to the previous steady state, there is a lower demand for
debt.19 This shows that learning is what generates long-lived reductions
in economic activity.

VI. Conclusion

Noone knows the true distribution of shocks to the economy. Economists
typically assume that agents, in theirmodels, do know this distribution as
a way to discipline beliefs. For many applications, assuming full knowl-
edge has little effect on outcomes and offers tractability. But for outcomes
that are sensitive to tail probabilities, the difference between knowing
these probabilities and estimating them with real-time data can be large.
In this paper, we present one such application: the effect of large, unusual
events on riskless interest rates.
The central mechanism is that observing tail events like the Great Re-

cession leads agents to assign a higher likelihood to such events going for-
ward. Importantly, this change in beliefs is relatively persistent, even if
crises never recur. As a result, assets that are safe and liquid, such as gov-
ernment bonds, become more valuable.
When we quantify this mechanism and use capital price and quantity

data to directly estimate beliefs, the model predicts large, persistent drops
in interest rates, similar to the observed decline in government yields in the
years following theGreatRecession. These results suggest that perhapsper-
sistently low interest rates took hold because after seeing how fragile our
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financial sector is, market participants will never think about tail risk in the
same way again.

Appendix

Role of Risk Aversion

In table A1, we show how higher risk aversion translates to a larger sen-
sitivity of interest to tail risk, even in the absence of liquidity effects.

Computing Option-Implied Tail Probabilities

To compute tail probabilities, we follow Backus, Foresi, and Wu (2008)
and use a Gram-Charlier expansion of the distribution function. The
CBOE also follows this method in its white paper on the SKEW index
to compute implied probabilities. This yields an approximate density
function for the standardized random variable, q = (x - m)/j:

f (q) = J(q) 1 - g
(3q - q3)

6

� �
 where g = E

x - m

j

h i3
,

where J(q) is the density function of a standard normal random variable
and g is the skewness. (The Gram-Charlier expansion also includes a
term for the excess kurtosis, but it is omitted from the expansion because,
as shown by Bakshi, Kapadia, andMadan [2003], it is empirically not sig-
nificant.)

Table A1
Interest Rates in the Long Run, without Liquidity Effects

Risk Aversion ĝ 2007 ĝ 2009 Change

s = 2 2.31 2.23 -.08
s = 10 2.31 1.67 -.64

Endnotes

Authors’ email addresses: Kozlowski (kozjuli@gmail.com), Veldkamp (lveldkam@stern
.nyu.edu), Venkateswaran (vvenkate@stern.nyu.edu). We thank Jonathan Parker, Marty
Eichenbaum, andMarkGertler for helpful comments and suggestions, and François Gourio
and Robert E. Hall for their insightful discussions. For acknowledgments, sources of re-
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see http://www.nber.org/chapters/c14073.ack.
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1. This index is constructed from market prices of out-of-the-money options on the S&P
500 (CBOE 2019). It is designed tomimicmovements in the skewness of risk-adjusted skew-
ness; a higher level indicates a more negatively skewed distribution. Note that this is differ-
ent from the Chicago Board Options Exchange Volatility Index (VIX), which measures im-
plied volatility (i.e., the second moment). The VIX rose dramatically in the immediate
aftermath of the crisis but came down quite sharply afterward.

2. Backus, Ferriere, and Zin (2015) analyze propagation in business cycle models.
3. These include papers on news shocks (e.g., Beaudry and Portier 2004; Lorenzoni 2009;

Veldkamp and Wolfers 2007), uncertainty shocks (e.g., Jaimovich and Rebelo 2006; Bloom
et al. 2014; Nimark 2014; Berger, Dew-Becker, and Giglio 2017), and higher-order belief
shocks (e.g., Angeletos and La’O 2013; Huo and Takayama 2015).

4. For example, inMoriera andSavov (2015), learningabout ahidden two-stateMarkovpro-
cesswithexogenouslyknownpersistencechangesthedemandforshadowbanking(debt)assets.

5. Other kernels we explored included other nonparametric kernels (e.g., Epinechnikov),
kernels designed to better capture tail risk (e.g., Champernowne), and semiparametric ker-
nels with Pareto tails and the g-and-h family, which covers several transformations of the
normal distribution. Each alternative yielded similar economic predictions because new data
increased the tail probabilities of each distribution in a similar way. For a detailed discus-
sion of nonparametric estimation, see Hansen (2015).

6. As kt → 0, the CDF of the kernel converges to Ĝ 0
t (f) = (1=nt)Snt-1

s=0 1fft-s ≤ fg. Then, for
any f, j ≥ 1, Et½Ĝ 0

t+j(f)jI t� = Etf½1=(nt + j)�Snt+j-1
s=0 1fft+j-s ≤ fgjI tg and Et½Ĝ 0

t+j(f)jI t� = ½nt=(nt +
j)�Ĝ 0

t (f) + ½ j=(nt + j)�Et½1fft+1 ≤ fgjI t�. Thus, future beliefs are, in expectation, a weighted
average of two terms: the current belief and the distribution from which the new draws
of the data ft are made. When shocks are also drawn from the current belief distribution,
the two terms are exactly equal, implying Et½Ĝ 0

t+j(f)jI t� = Ĝ 0
t (f).

7. The i.i.d. assumption also has empirical support. In the next section (Liquidity), we use
macro data to construct a time series for ft. We estimate an autocorrelation of .15, statistically
insignificant.

8. It is straightforward to allow for some unsecured debt, and this has a negligible effect
on our results.

9. Our results are robust to alternative measures of nominal price changes, e.g., computed
from the price index for gross domestic product or personal consumption expenditure.

10. Calibrating to the average values during 1950–2007 yields almost identical results.
11. Liquid assets are defined as total financial assets (BGFRS 2017, table B.103, row 7) less

long-term financial assets (rows 21–24).
12. The steady state is obtained by simulating the model for 1,000 periods using ĝ 2007

and the associated policy functions, discarding the first 500 observations and time-
averaging across the remaining periods.

13. We thank Del Negro et al. (2017) for sharing their estimates with us.
14. This is in part due to the low level of risk aversion in our parameterization. In the ap-

pendix, we repeat this analysis with higher risk aversion (specifically, s = 2 and s = 10).
Then, tail risk has a somewhat larger effect on interest rates, even in the absence of liquidity.

15. They add the spread between Baa corporate bonds and Treasuries to their VAR to
identify the convenience yield component.

16. However, the model actually implies a sizable equity premium even in the pre-2008
steady state. This stems almost entirely from liquidity considerations, which drive down the
required return on government bonds relative to all illiquid assets (e.g., equity). This is essen-
tially themechanism inLagos (2010),who shows that amodelwith liquidity considerations can
help rationalize many asset pricing anomalies, including the equity premium puzzle.

17. The 1-year-ahead forecast of returns is obtained using a regression where the left-
hand variable is the 1-year real return on the S&P and the right-hand variables are a con-
stant, the log of the ratio of the S&P at the beginning of the period to its dividends averaged
over the prior year, and the log of the ratio of real consumption to disposable income in the
month prior to the beginning of the period.

18. Details of the computation are in the appendix.
19. Since the no-learning economy is endowedwith the same end-of-sample beliefs as the

learning model, they both ultimately converge to the same level. But they start at different
steady states (normalized to 0 for each series).
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